Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biometrics ; 79(2): 1306-1317, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-35861170

RESUMO

Recent Hi-C technology enables more comprehensive chromosomal conformation research, including the detection of structural variations, especially translocations. In this paper, we formulate the interchromosomal translocation detection as a problem of scan clustering in a spatial point process. We then develop TranScan, a new translocation detection method through scan statistics with the control of false discovery. The simulation shows that TranScan is more powerful than an existing sophisticated scan clustering method, especially under strong signal situations. Evaluation of TranScan against current translocation detection methods on realistic breakpoint simulations generated from real data suggests better discriminative power under the receiver-operating characteristic curve. Power analysis also highlights TranScan's consistent outperformance when sequencing depth and heterozygosity rate is varied. Comparatively, Type I error rate is lowest when evaluated using a karyotypically normal cell line. Both the simulation and real data analysis indicate that TranScan has great potentials in interchromosomal translocation detection using Hi-C data.


Assuntos
Cromossomos , Translocação Genética , Humanos , Simulação por Computador , Análise por Conglomerados , Linhagem Celular
2.
Ann Appl Stat ; 16(3): 1253-1267, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38721067

RESUMO

Recent development of high-throughput biotechnologies, such as Hi-C, have enabled genome-wide measurement of chromosomal conformation. The interaction signals among genomic loci are contaminated with noises. It remains largely unknown how well the underlying chromosomal conformation can be elucidated, based on massive and noisy measurements. We propose a new model-based distance embedding (MDE) framework, to reveal spatial organizations of chromosomes. The proposed framework is a general methodology, which allows us to link accurate probabilistic models, which characterize biological data properties, to efficiently recovering Euclidean distance matrices from noisy observations. The performance of MDE is shown through numerical experiments inspired by regular helix structure and random movement of chromosomes. The practical merits of MDE are also demonstrated by applications to real Hi-C data from both human and mouse cells which are further validated by gold standard benchmarks.

3.
NAR Genom Bioinform ; 3(1): lqaa087, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33575647

RESUMO

Traditional bulk RNA-sequencing of human pancreatic islets mainly reflects transcriptional response of major cell types. Single-cell RNA sequencing technology enables transcriptional characterization of individual cells, and thus makes it possible to detect cell types and subtypes. To tackle the heterogeneity of single-cell RNA-seq data, powerful and appropriate clustering is required to facilitate the discovery of cell types. In this paper, we propose a new clustering framework based on a graph-based model with various types of dissimilarity measures. We take the compositional nature of single-cell RNA-seq data into account and employ log-ratio transformations. The practical merit of the proposed method is demonstrated through the application to the centered log-ratio-transformed single-cell RNA-seq data for human pancreatic islets. The practical merit is also demonstrated through comparisons with existing single-cell clustering methods. The R-package for the proposed method can be found at https://github.com/Zhang-Data-Science-Research-Lab/LrSClust.

4.
Life Sci Alliance ; 3(11)2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32972997

RESUMO

Single-cell RNA-sequencing (scRNAseq) technologies are rapidly evolving. Although very informative, in standard scRNAseq experiments, the spatial organization of the cells in the tissue of origin is lost. Conversely, spatial RNA-seq technologies designed to maintain cell localization have limited throughput and gene coverage. Mapping scRNAseq to genes with spatial information increases coverage while providing spatial location. However, methods to perform such mapping have not yet been benchmarked. To fill this gap, we organized the DREAM Single-Cell Transcriptomics challenge focused on the spatial reconstruction of cells from the Drosophila embryo from scRNAseq data, leveraging as silver standard, genes with in situ hybridization data from the Berkeley Drosophila Transcription Network Project reference atlas. The 34 participating teams used diverse algorithms for gene selection and location prediction, while being able to correctly localize clusters of cells. Selection of predictor genes was essential for this task. Predictor genes showed a relatively high expression entropy, high spatial clustering and included prominent developmental genes such as gap and pair-rule genes and tissue markers. Application of the top 10 methods to a zebra fish embryo dataset yielded similar performance and statistical properties of the selected genes than in the Drosophila data. This suggests that methods developed in this challenge are able to extract generalizable properties of genes that are useful to accurately reconstruct the spatial arrangement of cells in tissues.


Assuntos
Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Análise de Célula Única/métodos , Análise Espacial , Algoritmos , Animais , Bases de Dados Genéticas , Drosophila/genética , Previsões/métodos , Regulação da Expressão Gênica no Desenvolvimento/genética , Redes Reguladoras de Genes/genética , Análise de Sequência de RNA/métodos , Transcriptoma/genética , Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...